
Hey Ben,

Here are the three things Ted and I worked on

Groups Calendar Context

→ Organic Groups/CCK-Views/Panels 2 Calendar using calendar and date module 
(not event and og_calendar)

→ Tabbed mini-panel implementation of block — passing arguments through to the view.
→ Organic Groups Breadcrumb Context management

I will try to walk you through in detail. 

I provide all the steps and notes, even though you are familiar with many of them. (I will share 
this document with others less familiar with the process.)

Contextual Group Calendar Using Calendar module, Views and Panels 2

From a UI perspective, this is what we're after:

Work/Project Summary

I wanted full control over the evolution and design of calendaring in my site, but as importantly, I 
wanted to maintain group home-page context as users schedule and review events. 

As you may know, using Event module takes control of calendaring AND disrupts the context — it 
moves the user from the groups area of the site with the calendar displayed into the event 
module breadcrumb. This is confusing for users, and I wanted to eliminate that confusion.

In order to do this I had to eliminate the Event and og_calendar modules, but I also had to have a 
way for the group node id (not the group id) to be read and maintained by Drupal. Once I 
understood what argument handling code to pass through (not just arguments), all as pretty 
straightforward.



The step that complicated this is that I am using mini panels to place a calendar block on the 
page. This is not hard, but the panel must recognize the argument handling code in order to 
"know" where it is — in order to maintain group context. By simply passing arguments through 
the mini panel to the view the whole set of 1) how to display events and 2) how to maintain 
context was all synched up, and I could move on to clarifying the breadcrumb.

The reason breadcrumbing was so important is that this is the only way to present navigational 
options with "Groups/"the-group-you-are-in"/calendar context at the top of each content area — 
following the trail from the group home page block-view to calendar-view to event listing to 
node. To manage the breadcrumbs a template page snippet had to be developed.

All this likely convoluted to the average user. It was to me prior to diving into it. I hope my break-
down of the steps helps others avoid the convolution and get right to clean, contextual group 
calendaring. 

Many of the steps implemented here can be applied to other scenarios, and I hope too that the 
presentation of the steps helps people understand how Views, CCK and Panels 2 "talk" to each 
other through field types, argument types and argument handling code. It's really not that hard.

I worked with Ted Sirbinsky of Lullabot and MothersClick fame on solving this problem.

Views-based Calendar Configuration Procedure

The challenge of building a Views-based, tabbed mini-panel calendar has several parts: 
Check here for the concise, Drupal.org generic walkthrough of this process.

 I turning off the event and og_calendar modules, if they are installed,
 II installing calendar module and making sure date module are installed and enabled,
 III  creating a simple event content type with a date-stamp

IV configuring a group calendar view
V installing panels 2 and tabs panel-style modules:

note: panels 2 is in beta and my current configuration does not work with panels 2 
beta 2. It works well with panels 2 alpha 13. I don't know why, and I don't have time to 
figure it out right now.

Make sure you run update.php when you install Panels 2. There are some 
database additions that are critical for proper Panels 2 functionality.

VI creating a block view calendar with the right arguments and argument handling code,
 VII creating the calendar mini panel and passing argument handling code through to the 

view in the mini-panel,
 VIII creating the "group_tab" mini panel and styling the mini panel as "tabbed style"

and placing the tabbed mini panel into Group home panel page 
 IX clarifying breadcrumbs through template page code.

I & II — Easy part. I just removed event and og_calendar from my configuration. I did not have 
event nodes already on my site, so I didn't have to worry about management of those 
dates. Download the calendar and date modules, install and enable them.

III — Creating an Event Content Type

Karen S. wrote a very good, step by step for using Calendar and Date with views can be 
found here. There is also a step by step on creating the event content type. The one 
difference between the content type Karen S. creates and mine is that I use a Datestamp 
field instead of a Date field. (The view Karen S. provides had to be modified for my 
application.

VI — Creating a Calendar Block View 

Installing and activating Calendar module makes available a calendar view. Once the view is 
added the basic template for a calendar is available -- it's just a matter of configuring it 
well. 

This "simple" thing is where so many people spend too much time. The steps here are 
important to follow, and it's easy to miss a couple of them:

1) Editing the Calendar View:

Once you have added the Calendar View, choose "edit":
→ Give the View a good name. Mine's "group_calendar". You may add calendars in the 

future; a clear name will make them all easy to keep track of all calendars. This 



group name is machine readable and is used by the your database. 
Note: It is NOT the View "Title". The View Title will be discussed below.

2) Page View & Block View:

You will need both a Page view and a Block view for the group_calendar. 

The reason is clear when you think about it. In terms of workflow or user experience, I wanted to 
have the block calendar available on the individual group home page  that would link users to 
events in a compact space and would give them an overview of their specific group's events. They 
can click on an event in that calendar block and go to the page view calendar. [Creating a Groups 
home page is another whole step -- some of the process can be found here.]

→ Make sure "Provide Page View" is selected.
It is important that the URL entered is clear and simple.

→ Because the Calendar View was added, the "View Type" will be automatically 
selected as Calendar.

→ The "Title" of the calendar view in my site is "Calendar." 
Note: Be clear here. In order for you to place this block into a panel in the next 
section, Panels 2 will need the title of this view. The "View Title" helps YOU keep 
track of and use the view. "Name" helps the database keep track of and use the 
view.
→ Make sure "Provide Block" is checked.
→ Calendar View Type will automatically be selected. 

If for some reason you have changed it, make sure it is "Calendar."
I have titled the block "Test Calendar" —  title it what will make the most sense. 

→ Display 999 nodes per block -- These are events, and chances are you may need a 
lot of linked references to nodes/events created by users. It helps to just max this 
field out.



3) Fields:

The fields for this Calendar view are simple: 

→ Create a Node Title field as a link



→ Create a Datestamp (name of content type) field. The name of this datestamp must be the 
same as the CCK event_date content type. Don't group multiple values. 

4) Arguments:

Once the fields are created you must create the proper arguments for each of ways your events 
are presented. This is the heart of OG context control.

→ Calendar module creates a view template and Calendar:Year, Month, Day should be already 
present in your view.

→ You will have to add the Og: Group nid(s) argument type in order to use the argument 
handling code.

→ These argument Titles will present the user with clear breadcrumbs which clarify where the 
user is at any time, 

→ The Og: Group nid(s) arg type will establish a Node Id context which ties each of the args 
together with a og_get_group_context() argument code. 

→ It is important that these arguments be set up just this way. This is the heart of OG context 
control.



5) Filters:
→ make sure to set your filter to Published Equals Yes -- otherwise you won't get any published 

events.

Congratulations. 



You now will have a Views Calendar Page view. You will also have a calendar block to place into 
your panel. Calendar module comes with a css-styled calendar-mini that will reference all event 
dates as links that will connect you with a day-view of the node, and to the node itself. 

But much more on this next.

VII — Placing Views Block in Panels 2 mini-panel

1) Mini Panel Content panel (not the tabbed panel, but its content.)
In section V you downloaded and enabled the Panels 2 and Tabs Panel-style modules.

In this segment of section IV, you will create one content mini panel that will contain your 
Block View Calendar. We start with three mini panels already created.

Note: I have created a "calendar" mini panel, an "events" mini panel and a 
"groups_tabs" mini panel. The last, "groups_tabs" mini panel will contain the other 
two mini panels and will display them with tabs. The first two don't need tabs.

→ First click Add to create a new mini-panel

→ Once you have clicked Add, provide a clear title -- "calendar" works well. Then click 

Layout.

→ For this mini panel we want a Single column layout. Then click Layout Settings, or Next.



→ Layout settings provides a form to set the Panel style. Because this mini panel will go 

inside another, tabbed mini panel, set this to the default/no tabs style. Save.

→ Content: Once you have set the layout, it's time to add your calendar block view. 

Click the icon to add content.



→ Add Content to mini panel. Here is the reason you were clear when naming your 

calendar view. In Panels 2 beta you can restrict the clutter of views available to panels, 
so you don't have to pick through a bunch of blocks and views. Here we have found our 
Calendar View.

→ Configure Calendar is an important form. It displays as a pop-up. I want to override the 

title of the block, so no title appears. We want the calendar to appear in the tabbed 
mini panel as a block, so select View type to be Block.



→ Arguments: Don't miss this step! This is where our argument handling code will be 

passed through to the view from the panel. You must click Send arguments and enter 
%1 in the Arguments field. Otherwise our code will go unnoticed.

→ Content placed in configured mini panel: If you have not missed a step, you will see 

your working block inside your single column mini panel.



→ Save your mini panel configuration.

VIII Tabbed Mini Panel implementation 

This step by step will be quick and largely visual.

→ Again, I have created three panels in advance. Here, we will focus on the "groups_tabs" 
mini panel. We will use Tabs panel style module by Wim Leers to style "groups_tabs" 
and to display the "calendar" mini panel we just created.



→ Title your tabbed mini panel clearly so it can be selected easily when placing it in your 
Panels page layout (see below.)

→ Again, select a Single column layout. This is a "box" to contain your other panels, and it 
will be placed into two-column stacked panel later on.

→ Because your mini panel will have more than one block of content, you can select Tabs in 
the Layout settings section of mini panel configuration. (You must have the Tabs Style 



module loaded and enabled to see this selection option. If you don't have it installed 
you will not see this.

→ I have no style settings set for my mini panel, but here is the edit pop-up, so you know 
it's options.

→ Add your "calendar" mini panel by clicking the icon.



→ There is a special section in the Add content pop-up. In Panels 2 there is a Panels 
node selection option that allows you to filter the types of nodes that will show up 
in this window. If you have created multiple mini panels (I have 
"events" too) select those as well.

→ I have not overridden the title here. Click "Add pane". 

→ Once you have added the mini panel(s), they will be shown in your groups_tabs Content 
area. You can click the arrow/bullet next to the Mini panel title to preview its contents.



VIII (Part Two) Placing Tabbed Mini Panel into your page layout 

This section will not be outlined in detail. It is more of a bonus section to see how the 
panels page handles nested mini panels and to return us to the first UI image now with 
a little more understanding.

→ Go to your Panels admin, and select panels pages

→ You must first create a panel. I have many and Edit the _groups panel page.

→ In the layout area of the Settings section, you can see here I have already placed the 
"groups_tabs" mini panels in the right side of a Two column stacked layout.



→ This is where you would Add the tabbed mini panel "groups_tabs" as you have done in 
earlier steps.

→ If you select Preview (in Panels 2 beta, it is "View" in my alpha release) you can now see 
your tabbed mini panel display, and can toggle between calendar and events. (I have 
not added any additional arguments.)



→ Once again, the themed "final result."

IX Clarifying and making uniform the Breadcrumb Context 



All the above "functionality" development enables the user to create context sensitive 
group calendars. But Drupal's existing breadcrumbing system doesn't talk to the group 
context very well. So we created a template.php theme function override that tells the 
breadcrumbs to behave.

I worked with Ted Sirbinsky of Lullabot and MothersClick fame on solving this problem 
too. The issue was that the Groups home page recognizes the URL passed through the 
view. But calendar module and Drupal's default theme_breadcrumb() breadcrumb 
variable aren't set to interact. The Theme function override helps hook the breadcrumb 
into the group's view, node id and specific arguments.

I wrote this note to Ted when we were working this out:

I like this structure.

Home :: Groups :: The Vineyard Voice

This structure allows for:
1) "Groups": group directory selection
2) "The Vineyard Voice": would take you back to the group you are in -- (When it 

is also a calendar name it is confusing. I'd like to eliminate that confusion.)
This structure also serves as a real breadcrumb.

I would like to use this basic breadcrumb unit as the prefix for all deeper group 
calendar breadcrumbs.

For example, this current breadcrumb:

Home :: Test Calendar :: The Vineyard Voice :: 2008 :: January 2008

would be replaced with this structure:

Home :: Groups :: The Vineyard Voice ::  Test Calendar :: January :: 2008

To accomplish this, 

Ted wrote a theme_breadcrumb() override and called it vv_fix_breadcrumb().
The code is well commented and should be self-explanatory, even to non-phpers.

I will simply add the theme override code and bold the comments so you can 
understand what is happening:

/**
 * Fix breadcrumbs to work the way we want them to, overriding Drupal.
 *
 * @breadcrumb - Currently breadcrumb variable from Drupal.
 */

function vv_fix_breadcrumb($breadcrumb = array()) {

  // if a user is looking at a calendar       
  // arg(2) is the group id
  if (arg(1) == 'calendar' && is_numeric(arg(2))) {
    $breadcrumb = array(); // reset to empty so we can rebuild them
    $group = node_load(arg(2)); 
    $view = views_load_view(88); // the views ID of the calendar view   
    $breadcrumb[] = l('Home', '');
    $breadcrumb[] = l('Groups', 'og');
    $breadcrumb[] = l($group->title, 'node/'. $group->nid);          
    $breadcrumb[] = l($view->page_title, $view->url .'/'. arg(2));
    
    // if the view is showing a specific year
    if (is_numeric(arg(3))) {
      $breadcrumb[] = l(arg(3), $view->url .'/'. arg(2) .'/'. arg(3));      
    }
    
    // if the view is showing a specific month
    if (is_numeric(arg(4))) {
      $date = mktime(0, 0, 0, arg(4), 1, arg(3));
      $month = date('F', $date);    
      $breadcrumb[] = l($month, $view->url .'/'. arg(2) .'/'. arg(3) .'/'. arg(4));    
    }
    
    drupal_set_breadcrumb($breadcrumb);    
  } 
  // This section of the breadcrumb override is not for the Group pages, but for the main 
content types section of the Vineyard Voice



  if (arg(0) == 'publish') {
    $breadcrumb = array(); // reset to empty so we can rebuild them
    $breadcrumb[] = l('Home', '');
    
    if (arg(1) == 'audio' || arg(1) == 'blog' || arg(1) == 'video' || arg(1) == 'writing' || arg(1) == 
'image') {
      $breadcrumb[] = l(ucfirst(arg(1)), 'publish/'. arg(1));
    }
    drupal_set_breadcrumb($breadcrumb);        
  }

  return $breadcrumb;
}


